33 research outputs found

    The N400/FN400 and Lateralized Readiness Potential Neural Correlates of Valence and Origin of Words’ Affective Connotations in Ambiguous Task Processing

    Get PDF
    Recent behavioral studies revealed an interesting phenomenon concerning the influence of affect on the interpretation of ambiguous stimuli. In a paradigm, where the participants’ task was to read a word, remember its meaning for a while, and then choose one of two pictorial-alphabet-like graphical signs best representing the word sense, we observed that the decisions involving trials with reflective-originated verbal stimuli were performed significantly longer than decisions concerning other stimuli (i.e., automatic-originated). The origin of an affective reaction is a dimension which allows speaking of an affect as automatic (you feel it in your guts) or reflective (you feel it comes from your mind). The automatic affective reaction represents the immediate and inescapable as opposed to the reflective, i.e., the delayed and controllable affective responses to stimuli. In the current experiment, we investigated the neural correlates of performance in an QR-signs-selection ambiguous task. We found the effects of valence and origin in the N400/FN400 potential by means of a stimuli-locked analysis of the initial part of the task, that is, the remembering of a certain word stimulus in a working memory. The N400/FN400 effects were separated in space on scalp distribution. Reflective originated stimuli elicited more negative FN400 than other conditions, which means that such stimuli indeed are associated with conceptual incongruence or higher affective complexity of meaning, but distinct from purely cognitive concreteness. Moreover, the amplitude of the potential preceding the decision, analyzed in the response-locked way, was shaped by the origin of an affective state but not valence. Trials involving decisions concerning reflective-originated words were characterized by a more negative amplitude than trials involving automatic-originated and control word stimuli. This corresponds to the observed pattern of response latencies, where we found that latencies for reflective stimuli were longer than for automatic originated or control ones. Additionally, this study demonstrates that the proposed new ambiguous paradigm is useful in studies concerning the influence of affect on decisions

    Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks

    Get PDF
    Objective. Extracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem. Approach. The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention. We designed four neural network models differing in architecture, training strategies, and input representation to classify single experimental trials of a working memory task. Main results. Our best models achieved an accuracy (ACC) of 65.29 ± 0.76 and Matthews correlation coefficient of 0.288 ± 0.018, outperforming the reference model trained on the same data. The highest correlation between classification score and behavioral performance was 0.36 (p = 0.0007). Using analysis of input perturbation, we estimated the importance of EEG channels and frequency bands in the task at hand. The set of essential features identified for each network varies. We identified a subset of features common to all models that identified brain regions and frequency bands consistent with current neurophysiological knowledge of the processes critical to attention and working memory. Finally, we proposed sanity checks to examine further the robustness of each model's set of features. Significance. Our results indicate that explainable deep learning is a powerful tool for decoding information from EEG signals. It is crucial to train and analyze a range of models to identify stable and reliable features. Our results highlight the need for explainable modeling as the model with the highest ACC appeared to use residual artifactual activity

    Precision of scoring radiation-induced chromosomal aberrations and micronuclei by unexperienced scorers

    Get PDF
    Purpose: Dose assessment plays an important role in case of radiological accidents and can be performed by scoring structural changes of chromosome morphology induced in cells by ionizing radiation. The results of such a test are biased by scorer experience, therefore, simple to learn assays are recommended to be used when fast analysis of a large amount of data is needed. The aim of this study was to compare the performance of two radiobiological assays – chromosomal aberrations and micronuclei – by unexperienced scorers with the reference values generated by an expert. Materials and methods: Each participant of an EU-funded two-week radiobiology course was asked to score Chinese hamster ovary cells exposed to gamma radiation up to 4 Gy. The congruence of students’ and expert’s scores at each dose and the coherence of the dose-response curve parameters between the students were investigated. Results: Micronucleus test tended to be faster and easier to learn than scoring chromosomal aberrations. However, both assays carried out by inexperienced students showed reasonable dose-response curves. Conclusions: In the case of a large radiological accident involving many casualties, the unexperienced scorers would support the process of biodosimetric triage by cytogenetic biological dosimetry

    Statistical Analysis of Sleep Spindle Occurrences

    Get PDF
    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely

    Two Aspects of Activation: Arousal and Subjective Significance – Behavioral and Event-Related Potential Correlates Investigated by Means of a Modified Emotional Stroop Task

    No full text
    The arousal level of words presented in a Stroop task was found to affect their interference on the required naming of the words’ color. Based on a dual-processes approach, we propose that there are two aspects to activation: arousal and subjective significance. Arousal is crucial for automatic processing. Subjective significance is specific to controlled processing. Based on this conceptual model, we predicted that arousal would enhance interference in a Stroop task, as attention would be allocated to the meaning of the inhibited word. High subjective significance should have the opposite effect, i.e., it should enhance the controlled and explicit part of Stroop task processing, which is color naming. We found that response latencies were modulated by the interaction between the arousal and subjective significance levels of words. The longest reaction times were observed for highly arousing words of medium subjective significance level. Arousal shaped event related potentials in the 150–290 ms time range, while effects of subjective significance were found for 50–150, 150–290, and 290–530 ms time ranges

    N450 and LPC Event-Related Potential Correlates of an Emotional Stroop Task with Words Differing in Valence and Emotional Origin

    No full text
    Affective meaning of verbal stimuli was found to influence cognitive control as expressed in the Emotional Stroop Task (EST). Behavioral studies have shown that factors such as valence, arousal, and emotional origin of reaction to stimuli associated with words can lead to lengthening of reaction latencies in EST. Moreover, electrophysiological studies have revealed that affective meaning altered amplitude of some components of evoked potentials recorded during EST, and that this alteration correlated with the performance in EST. The emotional origin was defined as processing based on automatic vs. reflective mechanisms, that underlines formation of emotional reactions to words. The aim of the current study was to investigate, within the framework of EST, correlates of processing of words differing in valence and origin levels, but matched in arousal, concreteness, frequency of appearance and length. We found no behavioral differences in response latencies. When controlling for origin, we found no effects of valence. We found the effect of origin on ERP in two time windows: 290–570 and 570–800 ms. The earlier effect can be attributed to cognitive control while the latter is rather the manifestation of explicit processing of words. In each case, reflective originated stimuli evoked more positive amplitudes compared to automatic originated words

    Fitted shape parameter across subjects.

    No full text
    <p>Values of the shape parameter of fitted gamma distribution for each of the scalp locations, assembled subject-wise; unreliable fits (as assessed by the KS plot) were removed; bars denote 95% confidence bounds of fitted parameter. There is no consistent effect of location on the shape parameter that would be exhibited across subjects and that would point to two distinct statistical processes governing frontal and parietal spindles.</p
    corecore